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ABSTRACT 

The work described in this Report is concerned with the calculation 

tions obtained by the finite-element method. When displacements 
and rotations of a thin shell or plate middle surface are known at 
sdliciently many nodal points, approximations for the stress resultants 
and couples may be compiited hy ( 1 )  distrihiding the nndal forces 
and moments of a triangular element along nodal lines, (2 )  obtaining 
a best-fit deflection field in the triangle from the available nodal deflec- 
tions and using this field in the computation of strains and curvature 
changes, ( 3 ) obtaining best-fit displacement distributions along nodal 
lines from available nodal deflections and computing the components 
of best-fit strain and curvature-change tensors at nodes by least- 
squares from these distributions, and, finally, (4) combining the 
methods described in (2  ) and ( 3 ) .  Methods ( 1 ) and (2  ) enable one 
to keep the modular character of the finite element scheme. Methods 
(3)  and (4)  are semimodular, since they require information at all 
the neighboring nodes in order to compute the stresses at a node. 
These methods are formulated and discussed, and it is shown that the 
curvatures of the middle surface may be taken into account in all 
four instacces. 

I 

of stresses in linear thin shells of aeolotropic material using the deflec- . I  

1. INTRODUCTION 

The finite-element method is being used suc~e~sfully 
in conjunction with the displacement approach in the 
deflection analysis of plate and shell structures. The dis- 
placement approach is so called because the computations 
start with a continuous and piecewise differentiable trial 
deflection field which accepts as undefined parameters 
the displacements and rotations at sufficiently many mid- 
dle surface points (nodes) to permit approximations to 
be made for the stress resultants and couples. In this 
approach, the total potential energy of the system is estab 
lished in terms of the trial deflection field by writing the 
volume and surface integrals as the sum of those of 

the subdomains defined by the lines joining neighboring 
nodes. 

If the integrand of the energy expressions for a sub- 
domain contains only the deflections of those nodes which 
are used to define the subdomain, the subdomain is con- 
sidered a finite element, and the approach k called the 
finite-element method. In this approach, the minimiza- 
tion equations of the whole system can be obtained from 
the minimization equations of each element by the stand- 
ard assembly technique of the direct-stiffness method, in 
which the procedure is modular in elements. If the curva- 

1 
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ture of the middle surface is neglected in the triangular 
elements, such elements are called flat triangular ele- 
ments. Since the method is basically a stationary func- 
tionaPmethod, the level of confidence in the mean values 
of the results thus obtained is usually high, although the 
local values cannot generally be treated with the same 
confidence. 

In cases of gradually varying actual deflections in tri- 
angular subdomains established by the nodes, the results 
obtained by the finite-element method are in very good 
agreement with the analytical results, even on a local 
basis (Refs. 1 and 2).  In such cases, one may expect to 
obtain acceptable approximations for the stress resultants 
and couples which are related only to the first derivatives 
of computed deflections. The degree of accuracy of the 
latter is, of course, dependent on, and somewhat inferior 
to, the degree of accuracy in the computed deflections. 

Therefore, one should proceed to compute the stresses 
only after being certain that the computed deflection field 
is of sufficient accuracy. In this work, it is assumed that 
the displacements and rotations are sufficiently accurate 
and that, in any given triangular subdomain, the second 
derivatives of the actual deflection components either do 
not change sign, or if they do, their magnitudes remain 
very small. These assumptions enable one to compute 
stress resultants and couples in a triangle by merely using 
the nodal deflections of the triangle. In this way, the 
modular character of the finite-element method is pre- 
served during the stress calculation phase. For increased 
accuracy, one may compute stresses in the finite element 
by considering the deflections of a node as well as those 
of neighboring nodes. This scheme is not modular to the 
element, but it is modular in node sets. In this Report 
only those stress calculation schemes which are modular 
either in triangular elements or in node sets are considered. 

II. STRESS COMPUTATION BY NODAL FORCES 

Nodal forces of a triangular element are the derivatives 
of the strain energy associated with the element, with 
respect to corresponding nodal deflections. These deriva- 
tives are linear in deflections, and the coefficient matrix 
is called the element stiffness matrix if the strain energy 
of the element is expressed in terms of its own nodal de- 
flections. Elemental stresses may be computed from ele- 
mental nodal forces because the elemental stiffness matri- 
ces are already available in the computer memory as an 
intermediate step of deflection computation; therefore, a 
method taking advantage of this readily available infor- 
mation would be economical. The elemental forces are 
obtained by a multiplication from the elemental stiffness 
matrix and the associated nodal deflections and can be 
looked upon as the approximate interelemental forces of 
the element lumped at the nodes. The way in which they 
are lumped is a function of the distribution of the trial 
deflection field in the element. In order to determine the 
distribution of the forces along the sides of the element, 
reference must be made to the trial deflection field. If 
this field is linear in spatial variables, the stress field in 

2 

the element is invariably constant. This makes possible a 
uniform distribution of the elemental nodal forces along 
the sides of the element. Assuming a linear distribution 
for middle surface tangential displacements in a flat tri- 
angular element yields a constant membrane force state 
(Ref. 3 ) .  Assumption of a linear distribution for rotations 
of normals to the middle surface results in a constant 
bending-moment state (Ref. 4). However, the latter also 
implies a zero transverse shear-force state, which is not 
acceptable. For a constant transverse shear-force state in 
the element, a quadratic distribution of rotations is neces- 
sary. Any trial deflection field which is not linear in spatial 
variables, however, will complicate the rules for dis- 
tributing the elemental nodal forces along the sides. In  
the stress computation by nodal forces, one generally ob- 
tains two sets of stresses for a nodal line, one from each 
of the two neighboring triangles. The sets will be identical 
if, and only if, the trial deflection field is the truc one. In 
dealing with approximate deflection fields, one should be 
prepared to find discontinuities in the computed stresses 
across the nodal lines. 

- 
I 
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111. STRESS COMPUTATION FROM A BEST-FIT DEFLECTION 
FIELD IN THE TRIANGULAR ELEMENT 

The computed nodal displacements and rotations can 
be used to obtain a best-fit deflection field in the triangle., 
from which the strains of the middle surface and the 
change of curvatures can be obtained. These, in turn, may 
be used in the stress-strain relationships to obtain the 
membrane forces and bending moments. Since the best-fit 
defiection fieids are I K J ~  iiecebsarily h e  true Gtslds, ilieit: 
will be discontinuities in stress resultants and couples 
along the nodal lines. However, a single valued stress 
field may be defined by taking into account only the 
centroidal values of the elemental stress fields. Having 
computed the moment field in the triangle, the trans- 
verse shears can be computed from the moments. 

The axailable infomiation on the nodal deflections of 
a triangular element a l l o ~  one to make unique linear 
distributions of tangential displacements and rotations. 
From the linear distributions, constant membrane force 
and bending moment fields may be obtained, as shown in 
Appendix A. The single-valued stress field of the whole 
structure is obtained by associating these constant values 
with the centroid of each element. The computation of 
the bending moments and the membrane forces at a 
centroid requires only the nodal deflections of the asso- 

of three neighboring triangles are used. this scheme gives 
zero transverse shears. 

cizted triz2gk. Hn-?;e\-?r, r?z!ess the cectr&,?! z?nme?.ts 

In order to obtain at least a constant transverse shear 
field, one needs a parabolic distribution for rotations or, 
equivalently, a cubic distribution for the transverse dis- 
placements in the triangular element. The available in- 
formation on deflections at the nodes of a triangular 
element makes possible a cubic distribution of the trans- 
verse displacements with one free parameter. (One trans- 
verse displacement and two rotation components at each 
of the three nodes provide nine pieces of scalar informa- 
tion, whereas the most general cubic distribution in two 
dimensions contains ten constants.) This free parameter 
should be evaluated rationally in order to obtain a good 
approximation for the true stress state. Some of the pos- 
sible methods of evaluating the free parameter are dis- 
cussed below: 

1. A prescribed value (including zero) may be assigned 
to one of the ten constants of cubic variation. This 
idea is not justified, since it would cause unrealistic 
distortions in the computed stress field. This method, 

of course, includes the case in u hich any two of the 
ten constants are taken to he eqiial (Ref. 5 ) .  

2. One may try to compute the free parameter by using 
any pertinent known information about the true 
stress or deflection state in the triangle. However, 
this procedure is not compatible with the concept 
of automatic computation. 

3. The free parameter may be determined so that the 
discontinuity in one of the bending moments or 
transverse shears at a point on a nodal line n7ill be 
as small as possible. Howeker, application of this 
concept requires the use of nodal deflections of the 
whole structure. even if only the stresses of a single 
triangle are needed. Therefore, the method cannot 
be justified, because the cost of the additional com- 
putational labor far exceeds the value of the ex- 
pected increase in accuracy. 

4. The free parameter may be evaluated by minimizing 
the total potential energy of the element with pre- 
scribed trans\ erse displacements and rotations along 
the nodal lines. (The nodal deflections define a cubic 
\ ariation of tran\verce dicplacements and a linear 
\ ariation of their normal derivatices along a nodal 
me.  I Thic cifecrivciy meam rhar rhe eiemenr srraiii 
energy for an elmient loaded at the nodes only is 
being minimized. (The total potential energy is the 
911111 of the \train energy and the loss of potential 
energy of those boundary force5  hose displace- 
ments are not prescribed.) It is necessary that the 
trial deflection function \ v i 3  one free parameter 
satisfy the essential boundary condition, i.e., the 
prescribed deflections along the sides of the triangle. 
One finds that it is not possible to satisfy these 
essential boundary conditions with a cubic variation 
still retaining the free parameter. An attempt to 
evaluate the free parameter by satisfying the essen- 
tial boundary conditions in the direction of sides- 
but not in the normal direction-is described in 
appendix B. The results were found unsatisfactory. 

5. Retaining the modular character of the computa- 
tions, the free parameter can be evaluated to give 
reasonably good transverse shear forces by using 
the average curvature changes implied by the nodal 
rotations. The second derivatives of the cubic give 
the local curvature changes as a linear function of 
the spatial variables and the free parameter. The 

1. 
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local curvature changes, when integrated over the 
triangle, yield the area of the triangle times the 
average curvature changes. 

On the other hand, the average curvature changes 
in the triangle can also be obtained directly from 
the nodal rotations. By equating the changes, three 
scalar equations are obtained to evaluate the free 
parameter. The best value of the free parameter 
may be obtained from these equations by least- 
squares. However, the equation which relates the 
change of the average twist of the triangular element 
is not as reliable as the other two, since the average 
twist change of the triangle can be computed from 
the nodal rotations by using either the rotations in 
the xx-planes or the rotations in the yz-planes. (The 
z-axis is normal to the middle surface.) The arith- 
metic average of the results of these two alternatives 
is usually assumed as the average change in twist. 
However, the twist change may be a weighted aver- 
age in place of an arithmetic average. Therefore, 
this equation may not be taken into account. 

Although the least-squares technique may be 
applied to the remaining two equations to evaluate 
the free parameter, it is more reasonable and less 
troublesome to combine these equations before solv- 
ing for the free parameter. For example, by equat- 
ing the average gaussian curvature change of the 

triangle obtained from the cubic to that obtained 
from the nodal rotations, one derives one equation 
for the free parameter. Since the resulting equation 
will be nonlinear in the free parameter (the square 
of the gaussian curvature being the determinant of 
the curvature tensor), this scheme is not attractive. 
Furthermore, the average gaussian curvature change 
obtained from the nodal rotations contains the same 
uncertainty (as described above) in the average 
twist change of the triangular element. 

These difficulties can be eliminated easily by using 
the second curvature invariant (i.e,, the trace of the 
curvature tensor*) in place of the first invariant 
(i.e,, the gaussian curvature*). A desirable single 
equation from which the free parameter may be 
evaluated is established by equating the trace of the 
average curvature change tensor of the triangle ob- 
tained from the cubic to the one obtained from the 
nodal rotations, Since the trace of the curvature 
tensor is the sum of the diagonal elements, i.e., the 
normal curvatures along orthogonal directions, this 
equation is linear in the free parameter and inde- 
pendent of the average twist change of the element. 
This scheme is worked out in detail in Appendix C. 
The stresses obtained with the above method are 
quite satisfactory. 

'See Ref. 6. 

IV. STRESS COMPUTATION BY BEST-FIT CURVATURE CHANGE 
AND STRAIN TENSORS AT NODES 

A more realistic moment and transverse shear compu- 
tation may be achieved by considering the best-fit curva- 
ture tensor at a node. If the node does not correspond to 
an actual middle surface point of essential singularity 
(such as the vertex of a cone), a best-fit curvature change 
tensor can be obtained from all the normal curvature 
changes along at least three nodal lines meeting at this 
node, so that the three independent components of the 
curvature change tensor can be defined by means of the 
Dupin's indicatrix (Ref. 6). If more than three nodal 
lines meet at a node, the least-squares technique may be 
utilized to derive the best fit curvature change tensor. 

If the node is at the intersection of two or more middle 
surfaces, a best-fit curvature change tensor is obtained at 
the node for each surface, taking into account only those 
nodal lines which are on the same surface. 

Once the best-fit curvature change tensor at a node 
has been found, it is an easy matter to obtain the mo- 
ments at this node by using the material matrix. If the 
node has more than one best-fit curvature change tensor 
(the case in which the node is on more than one middle 
surface), then more than one set of moments will be 
obtained. 

4 
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In order to compute the normal curvature at a node 
along a nodal line, one first defines a best-fit transverse 
deflection curve along the nodal line using end deflec- 
tions in the normal plane-a plane containing the nodal 
line and normals to the middle surface at its ends, assum- 
ing that the nodal line is a geodesic. Then one obtains 
the normal curvature change by evaluating the second 
arc-length derivative of the curve at the node. This 
procedure clearly indicates that, in order to determine 
the best-fit curvature change tensor at a node which is not 
essentiaiiy singuiar, one needs deiiection informanon ai: 
this node and its immediate neighbors. Calling the node 
and its neighbors a “node set,” one concludes that this 
method of stress calculation is modular in node sets. 

With this scheme, the moments are computed at the 
nodes. Moments at other points may be obtained by in- 
terpolation. Transverse shear forces may be calculated 
at the centroids of triangular elements from the moment 
equilibrium equations, assuming linear variations of 
moments on the elements. Very good moments and trans- 

verse shear forces are obtained with this method, which 
is formulated in Appendix D. 

The same ideas may be used in obtaining the com- 
ponents of a best-fit strain tensor for the middle surface 
at a given node. Here, too, one needs at least three nodal 
lines of the same middle surface meeting at the node to 
d e h e  the three independent components of the strain 
tensor. From the end deflections of a nodal line, the 
tangential strain in the direction of the nodal line may 
be computed. Then, using the laws of strain transfoma- 
tion, together with at least three strains of this kind, the 
components of the strain tensor may be obtained. If the 
number of nodal lines meeting at a node of nonessential 
singularity is more than three, a best-fit strain tensor may 
be computed by the least-squares technique, and the 
membrane forces at this node may then be easily derived 
by using the material matrix. The membrane forces at 
other points may be obtained by linear interpolation. Ob- 
viously, the computation of membrane forces at nodes 
(as formulated in Appendix E) is also modular in node 
sets. 

5 
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Fig. 1.  Definition of clamped square-plate problem and triangulation 
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V. NUMERICAL RESULTS 

The methods described above have been applied to a 
clamped square plate subjected to a central concentrated 
transverse load. Figure 1 shows the plate, the coordinate 
system, and the triangulation. Table 1* gives the series 
solution (Ref. 7) of the nodal deflections. Using the pro- 
gram described in Ref. 4 &e finite-elment solutions of 
nodal deflections were obtained and are presented in 
Table 2. The series s~!t~tions (Ref. 7) of hnding  moments 

and transverse shears are given in Table 3.* Figure 2 com- 
pares the series and the finite-element solutions of tlj and 
e, along the x-alris. 

Using the values presented in Table 2, the shears and 
moments are computed by the methods presented in this 
Report. The results are compared in Figs. 3-9. 

'Obtained by Prof. H. E. Williams, Harvey Mudd College, Pomona, California. 

Table 1. Deflections of clamped plate by 
series method 

Nodal 
point 

1 
2 
3 
4 
5 
6 
7 
9 
10 
1 1  
12 
? 3  
14 
17 
18 
19 
20 
21 
25 
26 
27 
28 
33 
34 
35 
41 
42 
49 

1 05w 

1.3124 
1.1617 
0.8835 
0.5777 
0.2973 
0.0866 
0. 
1.055 1 
0.8 153 
0.5366 
0.2766 
n.nno4 
0. 
0.6434 
0.4284 
0.2213 
0.0640 
0. 
0.2869 
0.1475 
0.04 1 8 
0. 
0.0742 
0.01 99 
0. 
0.0045 
0. 
0. 

0. 
0. 
0. 
0. 
0. 
0. 
0. 

-0.4831 
- 0.3246 
- 0.1 986 
- 0.1 003 
- 0 0207 

- 0.5077 
- 0.3275 
- 0.1 692 
- 0.0507 

0. 

0. 
- 0.3652 
-0.1918 
- 0.0575 

0. 
-0.1668 
- 0.0492 

0. 

0. 
0. 

-0.0258 

- 

1 

0.5978 
0.7588 
Q.7516 
0.63 16 
0.3986 
0.0009 
0.4831 
0.6774 
0.6929 
0.5891 
n 37no 
0.0002 
0.5077 
0.5463 
0.4725 
0.2965 
0.0001 
0.3652 
0.3191 
0.1 968 

- 0.0004 
0.1 668 
0.0977 
0.0006 
0.0258 

- 0.0004 
0. 

10%. = - aw ,os 
ax 

Table 2. Deflections of clamped plate by 
finite-element method 

Nodal 
point 

1 
2 
3 
4 
5 
6 
7 
9 
10 
1 1  
12 
13 

14 
17 
18 
19 
20 
21 
25 
26 
27 
28 
33 
34 
35 
41 
42 
49 

1 osw 

1.2640 
1.1370 
0.8656 
0.5636 
0.2857 
0.0804 
0. 
1.0370 
0.8007 
0.5248 
0.2676 

0. 
0.6327 
0.4205 
0.2 160 
0.0607 
0. 
0.2814 
0.1436 
0.0398 
0. 
0.071 0 
0.0187 
0. 
0.0046 
0. 
0. 

o 13750 

aw 
a Y  

lo*& =- lob 

0. 
0. 
0. 
0. 
0. 
0. 
0. 

-0.4888 
- 0.3233 
-0.1933 
- 0.091 5 
-0.0269 

0. 
-0.51 17 
-0.3263 
-0.1662 
- 0.0465 

0. 
- 0.3671 
- 0.1 955 
- 0.0600 

- 0.1 670 
- 0.0476 

0. 

0. 

0. 
0. 

- 0.0242 

0. 
0.6027 
0.7446 
0.7587 
0.6256 
0.3945 
0. 
0.4888 
0.6814 
0.691 1 
0.5888 
0.3686 
0. 
0.5117 
0.5444 

0. 
0.3671 
0.3196 
0.1968 
0. 
0.1 670 
0.0941 
0. 
0.0242 
0. 
0. 

7 



4 
JPL TECHNICAL REPORT NO. 32-948 

Table 3. Bending moments and transverse shears of 
clamped-plate problem by series method 

107 - 
oini 

1 
2 
3 
4 
5 
6 
7 
9 
IO 
11 
12 
13 
14 
17 
18 
19 
20 
21 
25 
26 
27 
28 
33 
34 
35 
41 
42 
49 

- 

1 

3 

i 

I 

- 

M. 

0.39646 
0.13041 
0.04516 

- 0.00339 
-0.03382 
- 0.06864 
-0.12619 

0.1 0639 
0.04351 
0.00209 

-0.03169 
- 0.06774 
-0.1 1615 

0.03440 
0.001 50 

- 0.02674 
- 0.05560 
- 0.091 09 
- 0.001 97 
- 0.021 01 
-0.03935 
- 0.05797 
-0.01573 
-0.02302 
-0.02357 
- 0.0098 1 
- 0.002 2 a 

0.0 
0.1 5558 
0.06409 
0.01534 

- 0.00970 
- 0.04505 
- 0.08765 

0.44951 0. 
0.18220 0. 
0.09381 0. 
0.04212 0. 
0.01 193 0. 

-0.01361 0. 
-0.04207 0. 

0.10637 -0.02773 
0.07219 -0.02332 
0.03825 -0.01827 
0.00885 -0.01400 

- 0.01 675 - 0.00334 
-0.03872 0.0001 2 

0.03440 - 0.03009 
0.01869 -0.02828 
0.00131 -0.02322 

-0.01 538 -0.01496 
- 0.03036 - 0.0001 5 
-0.001 97 - 0.03002 
- 0.00735 - 0.02606 
-0.01330 -0.01705 
-0.01 932 0.00007 
-0.01573 -0.02300 
-0.01 115 -0.01472 
- 0.00786 0.0001 0 
-0.00981 -0.00831 
- 0.00076 - 0.00028 

0.00 0.0002 1 
0.19045 -0.02151 
0.1 0945 - 0.01 085 
0.05929 - 0.00736 
0.03366 - 0.00604 
0.001 48 - 0.00440 

-0.02581 -0.00228 

0. 
-0.03983 
-0.02021 
- 0.01 434 
-0.01 255 
-0.01329 
-0.01677 
-0.01982 
-0.01 599 
-0.01 263 
-0.01 139 
-0.01 204 
-0.01470 
-0.00932 
-0.00881 
-0.00841 
-0.00883 
-0.01028 
-0.00460 
-0.00456 
-0.00456 
-0.00476 
-0.00060 
-0.00027 

0.001 73 
0.00245 
0.00467 

-0.00057 
- 0.04775 
-0.02312 
-0.01 541 
-0.01365 
-0.01 240 
-0.01393 

Q U  

0. 
0. 
0. 
0. 
0. 
0. 
0. 

- 0.01 982 
- 0.00753 
-0.00294 
- 0.00039 

0.001 84 
0.00475 

- 0.00932 
- 0.00435 
- 0.00054 

0.0031 1 
0.00747 

- 0.00460 
- 0.00056 

0.00362 
0.00888 

- 0.00060 
0.003 1 5 
0.00764 
0.00245 
0.00265 

- 0.00057 
-0.02336 
- 0.00448 
- 0.001 55 
- 0.00073 

0.0001 1 
0.00095 

i60.~ 140. 1 2 0 . b d  1 FINITE-ELEMENT METHOD 
- CCDICC ucTunn 

NODE 

Fig. 2. Comparison of series and the finite-element 
solutions of w and 6, = - awlax along x-axis 
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NODE 

Fig. 3. Comparison of series and the least-squares 
solutions of M, moments of clamped plate 

along x-axis 

I 2 3 4 5 6 

NODE 

Fig. 4. Comparison of series and the least-squares 
solutions of M, moments of clamped plate 

along x-axis 

I02 Mx 

LINEAR ROTATION FIELD. 
CUBIC-MINIMUM STRAIN ENERGY 

16. CUBIC-BOUNDED CURVATURE TRACE 

12. 
SERIES METHOD 

NODE 

Fig. 5. Comparison of different M, moments of clamped 
plate along y = 4/3-in. line (centroids of  

first row of triangles, Fig. 1) 

I02 My 
32.1 I I I I I I 

LINEAR ROTATION FIELD, 

0 CUBIC-BOUNDED CURVATURE TRACE 
CUBIC-MINIMUM STRAIN ENERGY 

16. - SERIES METHOD 

NODE 

Fig. 6. Comparison of different M, moments of clamped 
plate along y = 4/3-in. line (centroids of  

first row of triangles, Fig. 1) 
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40. 

30.- 

103 M,, 

- LEAST-SQUARES METHOD 

- X CUBIC-MINIMUM STRAIN ENERGY 
0 CUBIC-BOUNDED CURVATURE TRACE 

-I 

0. 

-2. 

-4. 

-6. 

-8 .  

-10. 

-12. 

-18. 

-20. 
a b c d  0 f 

NODE 

Fig. 7. Comparison of different M,, moments of clamped 
plate along y = 4/3-in. line (centroids of 

first row of triangles, Fig. 1) 

a b c d  e f 

NODE 

Fig. 8. Comparison of different Q.,. shears of clamped 
plate along y = 4/3-in. line (centroids of 

first row of triangles, Fig. 1 )  

-60. 
LEAST-SQUARES METHOD 

0 CUBIC-BOUNDED CURVATURE TRACE 
x CUBIC-MINIMUM STRAIN ENERGY 

-100. SERIES METHOD 

NODE 

Fig. 9. Comparison of different 0, shears of clamped 
plate along y = 4/3-in. line (centroids of 

first row of triangles, Fig. 1 )  
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VI. CONCLUSIONS 

There are several modular stress computation methods 
for finite-element schemes using triangles in thin linear 
$hell$ of aeolotropic material. Strew resiiltant~ and couples 
can be computed in modules of (1) elements or (2) node 
sets, provided that the nodal deflections are already com- 
puted with sufficient accuracy and the second derivatives 
of actual deflection components either do not change sign 
Ok, if they do, theii i i~gi i i t i ide~ ieliiaiii very S i d I  in the 

I 

I 

I 
I 
I 

1 

I 

triangular subdomains. The stress computation methods 
which are modular in triangles are less accurate but easier 0 

I 

to program than those which are modular in node sets. 
If one does not need to compute the transverse shear 
forces, probably the best method that is modular in 
triangluar elements is the one which assumes a linear 
deflection field in the triangular element (Appendix A). 
If the transverse shear forces are also required, the method 
which assumes a cubic distribution of transverse displace- 

I 

ments (having the trace of the average curvature tensor 
as its own average) gives very good results (Appendix C). 
The methods based on the best-fit curvature change and 
strain tensors in the least-squares sense are superior to 
the methods which are modular in triangles (Appendixes 
D and E). However, since the former are modular in node 
sets, they are harder to program than those which are 
modli!ai iii tihiigikii clcmcnts. 

The methods described in Appendixes ,4 and C use flat 
elements. However, curvatures of the actual middle sur- 
face are implicitly taken into account in the computation 
of tangential and transverse deflections of the flat element 
from the nodal deflections of the actual middle surface. 
The methods described in -1ppendixes D and E explicitly 
allow for the inclusion of curvatures of the actual middle 
surface in the computations. 
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APPENDIX A 

Stress Computation in Triangular Elements Assuming Linear Deflection Fields 

Figure A-1 shows a triangular flat element of thickness t ,  referenced to the (xyz)-coordinate system. Nodes 1, 2, and 
3 are in the (xy)-plane. Let ui, oi, and wi be x-, y-, and z-components, respectively, of the displacement vector at node i, 
and ezi and eVi, the rotations about x- and y-axes, respectively, of the normal to the middle surface at the same node. 
Using nodal information, one can write 

Fig. A-1 

to define the linear deflection field in the triangle. (Note that the w-field is not included, since it will not be a linear field 
when rotation fields are linear. The w-field is not required for the computations below. However, it may be defined by 
integration from the first Kirchoff assumption, recalling that 0, = awhy and 8, = - aw/ax.) The coordinates xi and yi 
are of the ith node. Taking the inverse and the transposition indicated in (A-l), one obtains 

4 

12 
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According to the Kirchhoff assumption, 

(A-3) 

where I S ~ , , E ~ ~  and eq0 are the middle surface strains and &, Ky, and KZ, are the changes in normal curvatures and sur- 
face twist. The variable z is the distance from the middle surface. For %at elements, 

and for flat and/or shallow shell elements, 

These can be evaluated from the linear field (A-2) as 

Let the stress-strain relations be 

(A-7) 

13 
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in the (xyz)-coordinate system. If the material axes are coincident with a ((,y,z)-system but not with the (x,y,z)-system, 
the material matrix in the (&,z)-system should be transformed into the (x,y,z)-system by 

where c = cos a, s = sin a, and the barred quantities refer to the (&y,z)-system, and a is the angle between the x-axis 
and the (-axis, measured counterclockwise from the x-axis. I 

Substituting (A-6) into (A-3) and then (A-3) into (A-7), one obtains i 

Stress resultants N,, N,, N,, and stress couples M,, My, M, may be obtained by integrating (A-9) across the thickness of 
the element with weights 1 and z, respectively. The result is 

(A-10) 

Note that (A-10) gives a constant stress-resultant and couple field for the flat triangle. A single-valued stress field for the 
whole structure may be obtained by associating the stresses defined by (A-10) with the centroid of the element. The stress 
state at any other locations in the triangle should be obtained by linear interpolation from the stress values of the 
centroids surrounding this point. 

The transverse shear forces QJ and Q, may be derived for the centroids of a set of new triangles established by the f 

centroids of the original elements. Using the moment equilibrium equations 

(A-11) 

where the derivatives may be evaluated from the linear moment fields over the new triangles. 

14 
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If the triangular element shown in Fig. A-1 is not flat, (A-10) may still be used to represent the stress state at the 
centroid, provided that (1) the triangular shell element is shallow in the (xyz)-system, and (2) the tangent plane 
of the shell middle surface corresponding to the centroid of the flat element is parallel to the (xy)-plane. In the shallow 
shell theory, the middle surface strains are* 

(A-12) 

and the curvature change are as given in (A-5). The additional straining of the middle surface vanishes at the centroid 
if the tangent plane at this point is parallel to the (xy)-plane; i.e., &,/2x and &z.,/2y are zero. In (A-12), zo = zo (r, y) 
defines the geometry of the middle surface. 

'See, for example, Marguerre, K., Proceedings of 5th Intemutwnol Congress of Applied Mechanics, 1938, pp. 93-101. 

APPENDIX B 

Computation of Moments and Shears in Triangular Elements by a Cubic Transverse 
Displacement Field Yielding Minimum Strain Energy 

Figure B-1 shows a triangular 9at element of thickness t, referenced to the (ryz)-coordinate system. Nodes 1,2, and 3 
are in the (xy)-plane. To minimize algebraic manipulations, the origin of the (xyzj-system is placed at node 1. Let wi be 
the transverse displacement in the z-direction and e,, and e,, the rotations about the x- and y-axes, respectively, of 
the middle surface at node i. A cubic transverse displacement can be defined as 

w = u1x3 + u*y3 + u3x*y + u,xy* + usx* + usy* + u,xy + ut9 + usy + a10 (B-1) 

L 

I Qx 

Fig. 8-1 

15 
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Nine of the ten constants (aj, j = 1,2, . . ., 10) may be evaluated by 

W(Xi, yi) = mi 

(g)i = - 9,i 

(g)i = 9ri 

i = 1,2 ,3  

The remaining parameter will be evaluated by minimizing the strain energy of the element. 

The special choice of the origin of the (xyz)-system enables one to write 

as = -evl 

a, = 4, 

a,, = w1 

by using (B-2) for i = 1. The remaining conditi0n.r of (B-2) yield 

X 

X 

-1 

i - a7 

(B-3) 

(B-4) 
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Let 

be the stress-strain relations in the (xyz)-system. The bending strain energy of the element is 

where dA is the area element at the middle surface. Substituting the second derivatives from (B-1), one can write 

or, by taking the integral, 

- - 
6x 0 0 

0 6y 0 

2y 0 4x 

0 2x 4y 

2 0 0  

0 2 0  

0 0 2- 

6x 

0 

0 

0 

6Y 

0 

2Y 

0 

4x 

0 

2x 

4Y 

2 

0 

0 

0 

2 

0 
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where 

[TI = 

and 

1 8  

....................................... 

.................. .................... ..................... ' ....................................... 
4Szdii j , 4Szdiz @,dl3 

I +  + + 
8SUd13 8S,d2, ~ 8S,d,, 

........................................................ 
4SVdlZ 4S,dz2 ~ 4S,d2, 

+ + i f  

8Szd13 I , 8 S d z 3  j S S d , ,  
.......................................................... 

......... .-.. .......................................... 

A = SAdA 

..................................... 

..................................... 

...... 

...... 

Z, = S A  y2dA 

ad12 ' , 

........................................ 

i 4Ad2, j , a d 2 ,  

._..... ................................. 

~ a d , ,  
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The constants aj ( j  = 1,2, .-., 6) in Eq. (B-7) are functions of (1, (Eq. B-4); hence, a, is the free parameter. Then, to min- 
imize the strain energy, one writes 

aU aU aaj - o  -+---  
?a, aaj aa, (B-9) 

where the repeated subscript j indicates summation over the range i = 1,2, . . -, 6. The partial derivatives of U appearing 
in (B-9) may be obtained from (B-7), and aa,/aa, can be calculated from (B-4). 

The expressions are: 

(B-10) 

(B-11) 

where {t ,}  is the seventh column and [T*] is the first six columns of [TI, which is given by (B-8). Substituting (B-lo), 
(B-ll), and (B-12) into (B-9), one obtains 

where 

(B-13) 

(B-14) 
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Equation (B-13) is the condition which guarantees the minimization of the strain energy associated with (B-1) and (B-2). 
Constants ai ( j  = 1,2, .*., 7) may be obtained by solving simultaneously (B-4) and (B-13). These equations may be com- 
bined to yield 

-1 
uz - w1 + eup2 - exly: 

w 5  - w2 + e+ - exly, 

ell, - e112 

eu1 - eu3 

e x z  - ex, 

ex, - ezl 
0 

(B-15) 

Obtaining ai ( j  = 1, 2, ..., 10) from (B-3) and (B-15) and using these in (B-l), a unique cubic transverse displacement 
field is obtained. 

The curvature changes associated with (B-1) are obtained by taking second x- and y-derivatives of (B-1): 

Using these curvature changes, the linear moment field of the element may be written as 

The coordinates of the centroid of a triangle are 

x, + xz + x3 

3 24 = 

y1 + yz + Y3 

3 y4 = 

By evaluating (B-17) for (x4, y4), the moments at the centroid are obtained. 

The transverse shear forces may be derived from 

(B-16) 

(B-17) 

(B-18) 

(B-19) 

20 
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Evaluating the derivatives in (B-19) from (B-17) yields 

1Q4 - 

which is a constant field. A single-valued moment and -amverse shear field may be defined by tak-lg the centroidal 
values of the moments and transverse shear forces defined by (B-17) and (B-20) and assuming linear variation between 
the centroids. The same field woiild be obtained if the triangular elements were not flat and one iised the shallow shell 
theory. 

APPENDIX C 

Computation of Moments and Shears in Triangular Elements by a Cubic Transverse 
Displacement field of Bounded Trace in Curvature Tensor 

Figure C-1 shows a triangular flat element of thickness t, referenced to the (xyz)-coordinate system. Nodes 1 , 2  and 3 
are in the (q)-plane. To minimize algebraic manipulations, the origin of the (ryz)-system is placed at node 1. Let wi be 
the transverse displacement in the z-direction and eri and e,, the rotations about x- and y-axes, respectively, of the 
middle surface at node i. A cubic transverse displacement field can be defined as 

Fig. C-1 

2 1  
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Nine of the ten constants (a j ,  i = 1, 2, ..., 10) may be evaluated by 

W(Xi, yi) = wi 

~ i = 1,2,3 = - @,, 

and the remaining parameter may be evaluated by equating the trace of the average curvature change tensor of the 
triangle obtained from (C-1) to the one obtained from the nodal rotations. The special choice of the origin of the (xyz)- 
system enables one to write 

a, = - eUl 
a, = ezl 

a,, = w, 

by using (C-2) for i = 1. The remaining conditions of (C-2) yield 

The trace of the average curvature change tensor obtained from the linear rotation field is 

where A is the area of the triangle and x i j  = x i  - x i ,  yii = yi - yi. The trace of the curvature change tensor at a point 
in the triangle computed from (C-1) is 

(C-6) 
a2w a2w 
2x2 ayL u2w = - + - = (sa, + 2 4  x + (2a3 + Sa2) y + (2a5 + Za,) 

The average of v 2 w  for the triangle is 

(C-7) 
1 

H z  = A /n V'W dA = (Sa, + 2u4) x4 + (Za3 + Sa2) y4 + ( 2 ~ ~  + 2 ~ ~ )  
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where x4, y4 are the coordinates of the centroid of the triangle and are defined as 

x1 + x, + x3 

3 

Y1 + Y2 + Y3 

3 

2 4  = 

y4 = 

The condition that H ,  = H 2  yields 

One can now solve for the aj ( j  = 1, 2, --., 7) by combining (C-4) and (C-9): 

The curvature changes associated with (C-1) are obtained by calculating second derivatives of w :  

If the stress-strain relations in the (ryz)-system are 

\ = u / -  r\ - 
the linear moment field of the element may be written as 

(C-10) 

(C-11) 

(C-12) 

(C-13) 
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The transverse shear forces may be obtained from 

Evaluating the derivatives in (C-14) from (C-13) gives 

(C-14) 

(C-15) 

which is a constant field. A single-valued moment and transverse shear field may be defined by taking the centroidal 
values of moments and transverse shear forces defined by (C-13) and (C-15) and assuming linear variation between the 
centroids. The same field would be "Ftained if the triangular elements were not flat but shallow shell elements. 

APPENDIX D 

Computation of Shears and Moments by Best-Fit Curvature Change Tensors at Nodes 

Figure D-1 shows a node of nonessential singularity, its immediate n neighbors, and a typical nodal line Oi. Nodes 
i (i = 0,1,  ..., n) establish a node set. The ith normal plane ( i fO)  is the plane which contains the nodal line Oi and the 
z-axis. The intersection of the ith normal plane with the tangent plane (xy) defines the ti-axis, which is headed toward i. 
The ([i,rli,z)-system is a right-handed system. Let wi (i = 0, 1, ..., n) represent the transverse displacements, andONi and 
eFi (i = 1,2, ..., n) rotations about the ?;-axis at nodes 0 and i, respectively. Because of the Kirchhoff assumption 

where si is the arc length along Oi. Noting that transverse displacements at nodes 0 and i are wo and wi ,  one may approx- 
imate the actual transverse displacement distribution in the ith normal plane with 

w = als; + a& + a& + a4 (D-2) 
Using (D-1) and wo and u ; ~ ,  the end transverse displacements, the ak (k = 1, 2, ..., 4) can be defined as 

24 
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TANGENT PLANE 

MIDDLE 

(a)  REFERENCE COORDINATE SYSTEM AT NODE 0 

T-FIT w DISTRIBUTION 

(b) NODAL LINE O i  AND BEST-FIT TRANSVERSE 
DISPLACEMENT CURVE 

i 

i -  I 
( c )  NODE SET 

Fig. D-1 
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where Li is the arc length distance between nodes 0 and i. Using (D-2), one can obtain the change in the normal curva- 
ture of the middle surface at node i in the ti-direction as 

or, using the value of a, obtained from (D-3), 

Designate Kx, K,, and K ,  as the curvature changes in the x-and y-directions and the twist change, respectively, at 
node 0. The relation between K ,  and K,, K,, and K,,  can be expressed by (see Fig. D-2) 

I 
PRINCIPAL /- DIRECTIONS- oc = I/K 

DUPIN'S 
I N D I C ATR I X 

Fig. D-2 

which defines an ellipse in the tangent plane (Dupin's indicatrix"). This ellipse has the following property: the length 
of radius OC in any (,-direction is equal to Therefore, substituting x = cos aa/fl ,  and y = sin aa/fl ,  into 
(D-e), one can write 

(D-7) Kxcos2a, + Kysin2a, + 2Kaysina,  cosa, = K ,  

In the present problem, we have the knowledge of K ,  and a,; however, K,, K,, and K,, are not known. If one can 
write (D-7) for at least three independent (,-directions, K,, K,, and K,, can be computed uniquely. We have 

. .  

. .  

'See, for example, A. L. Gol'denveizer, Theory of Elastic Thin Shells, English Translation, New York: Pergamon Press, 1961, pp. 14-15. 
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where C, = cos a,, S, = sin a%, and n 3 3. Equation (D-8) may be solved by least-squares for K,, K,, and K,,: 

SO long as n 3 3, (D-9) will always give best-fit components for the curvature change tensor at node 0. 

If the stress-strain relations in the (xyz)-system are 

the bending moments at node 0 can be expressed as 

where t is the thickness. Having computed the moments at the nodes, one can compute transverse shears from 

air ani,, 
aY 

aM, ani,, 
C Y  ax 

Q s =  + -  

Q u =  - f -  

(D-10) 

(D-11) 

(D-12) 

by assuming linear variation for moments on the triangular elements. Let the nodes of a triangular element be labeled 
1,2, and 3; then, 

(D-13) 

where x,j  = xi - xj ,  yi = y i  - yj and numerical subscripts indicate the associated node number. The parameter A is 
the area of the triangle. These shears should be associated with the centroid of the triangle. 
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APPENDIX E 

Membrane Forces by Best-Fit Strain Tensors at Nodes 

Figure E-1 shows a node of nonessential singularity, its immediate n neighbors, and a typical nodal line Oi. Nodes i 
(i = 0, 1,2, ..., n) establish a node set. The ith normal plane (i # 0) is the plane which contains the nodal line oi and 
the z-axis. The intersection of the ith normal plane with the tangent plane (xy) defines the ti-axis, which is headed toward 
i. The angle between the ti-axis and the x-axis is ai, which is measured from the x-axis in a counterclockwise direction. 
Let us assume that the following information is available: 

X i  = curvature of nodal line at 0 (i = 1,2, . . ., n) 

wo = transverse displacement at node 0 

uNi = tangential displacement at 0 in ith normal plane 

uFi = tangential displacement at i in ith normal plane 

Then, the middle surface strain at 0 in the ti-direction may be expressed as 

where Li is the distance between 0 and node i. (It is assumed that the z-axis heads away from the center of curvature.) 
Let E,,,, ey, and E , ~ , ,  represent the components of the middle surface strain at node 0 in the (xyz)-system. The strain eoi 
and E,,,, q,,, E , ~ ,  are related by 

(E-2) E,, cosz ai + ey, sin' ai + 2 E , ~ , ,  sin a cos a = eoi 

TANGENT PLANE i 

COORDINATE SYSTEM u 

i - I  

NODE SET 

Fig. E-1 

SIGN CONVENTION 
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In the present problem, we have knodedge of eOl and a,; however, ETc,, euo, and eru0 are unknown. If one can write 
(E-2) for at least three independent directions, E,,,, ego, and erYo can be computed uniquely. We have 

c; s; 2ClS1 

c; s: 2c,s, 

n l  

25 c;si 
i=i 

45 cgs: 
i = 1  -1 

long as n 2 3, (E4)  will always give best-fit components of the middle surface strain tensor at node 0. 

If the stress-strain relations in the (xyz)-system are 

the membrane forces at node 0 can be expressed as 

where t is the thickness. 

(E-5) 


